

# Honors Bio Research Project: Week 1 – Exp't Design

| Name:               |             |      |           | Hour[                                  | Date:  |
|---------------------|-------------|------|-----------|----------------------------------------|--------|
| Date Packet is due: |             |      | Why late? |                                        | Score: |
|                     | Dav of Week | Date |           | If your project was late, describe why |        |

**Directions**: In this project, you will be working with your assigned group to design an experiment to test a hypothesis. Later, you will record data and observations, and form a conclusion about whether or not your hypothesis was accurate.

The design of this investigation is entirely up to you BUT you will need to get approval before you can begin. Just like real-world research, your investigation will only receive supplies and funding if your work is new, valuable, and worthwhile. Be sure to choose and plan your experiment wisely!

### Week 1: Experimental Design

1. Work with your group to come up with three ideas for an independent investigation. Summarize your ideas in the spaces below.

Remember, your ideas need to be feasible for the constraints and realities for your school – you won't be able to test anything overly complex or extensive. However, your ideas should also address questions that don't have an easily predictable outcome and would provide valuable insights for a particular group of people.

Good example: How does Gatorade affect the growth of radishes?

#### **Research Project Schedule**

Week 1: Experimental Design – Develop a research proposal to acquire finding and/or supplies to complete your work.

Week 2: Data Collection – Complete your investigation as proposed and collect data for later analysis.

Week 3: Data Analysis – Identify patterns and trends in your data, and explain these outcomes using core ideas from biology.

Week 4: Presenting Findings – Develop and deliver a formal presentation (Intro, Methods, Results, Discussion, Works Cited).

<u>Bad example</u>: How do specific drugs affect the brains of mice. (This is not feasible in a classroom setting). <u>Good example</u>: Does the hot water setting on a laundry machine result in cleaner clothes? <u>Bad example</u>: Do baking soda and vinegar work to make a scale model volcano? (This is too predictable).

| a    |  |
|------|--|
|      |  |
|      |  |
| b    |  |
|      |  |
|      |  |
| C    |  |
|      |  |
| <br> |  |



3. To begin, let's turn your idea into a **Research Question**. A research question is usually what frames and guides the entire experiment. Fill in the blanks below:

We wonder if

4. Now let's turn this into a **Hypothesis**. A hypothesis is the main emphasis of any experiment. It is simply an educated guess. Fill in the blanks below:

We hypothesize that if we

5. Now provide a **Rationale** for your hypothesis. A rationale simply states why you think your hypothesis might be right; it provides some evidence or logic that supports the validity of your hypothesis.

We think this will occur because:

6. Every experiment has two very important components – a *dependent variable* and an *independent variable*.

An **independent variable** is the thing you purposely changed. In this case, whatever purposely change would be your independent variable. Usually experiments only have one independent variable. *For example, if you treated radish seeds with Gatorade to make them grow faster, this would be the thing you purposely changed; the addition of Gatorade would be your independent variable.* 

A **dependent variable** is the thing or things you measure in order to determine if your hypothesis is correct. It should relate to your hypothesis in some way. *In the example above, you might measure radish height, rate of growth, weight, etc.* You can have multiple dependent variables, but they need to relate to your hypothesis.

What is your independent variable?

| What is v | vour de | pendent | variable | (s)?      |
|-----------|---------|---------|----------|-----------|
|           |         |         |          | · - / · . |

7. Every good experiment has a **control**. A control is simply a part of your experiment that does not receive any treatment. Whenever possible, we include a control so that we have something to compare to. *In the example above, if your untreated radishes in your control grew as tall as your radishes in your treated groups, we'd know that your treatment had no impact on radish height.* 

In this experiment, what will be your control? \_\_\_\_\_\_





8. Before moving on, let's recap everything that we have covered. Re-write your question, hypothesis, and rationale below. You may need to update your hypothesis to include your dependent variables listed above.

Research Question: We wondered if

Hypothesis: We hypothesize that

Rationale: We think this because

9. After you complete your investigation, what do you expect to find? How will your treated sample be different from your control? Describe your predictions for the end of your experiment in the space below:

10. What materials will you need to do this experiment? Think of everything you will need from beginning to end to make this experiment work. Keep in mind you will also need to include the tools you will use to measure your dependent variable (rulers, scale, etc.).





11. How will you test your hypothesis? Every experiment should have a detailed **Methods** section. The methods portion of an experiment should be like a cooking recipe – it should provide all of the steps and materials needed to successfully replicate an experiment (just like a recipe provides all of the details needed to successfully allow you to create the same kind of dessert).

Provide all of the steps needed to make your experiment happen. Be sure to ask yourself, "If I gave this to another person that is not in my group, could they create the exact same experiment with the exact same results?"

You may not need all of the steps below. It is ok to leave them blank if you do not need them, but make sure you are not missing any important details!!! HINT: Start a rough draft on a separate sheet of paper before writing your steps below.

| Step 1: |      |      |  |
|---------|------|------|--|
|         |      |      |  |
| Step 2: |      |      |  |
|         |      |      |  |
| Step 3: |      | <br> |  |
|         | <br> | <br> |  |
| Step 4: |      |      |  |
|         |      |      |  |
| Step 5: |      | <br> |  |
|         | <br> | <br> |  |
| Step 6: | <br> | <br> |  |
|         |      |      |  |
| Step 7: |      |      |  |
|         |      |      |  |
| Step 8: |      |      |  |
|         |      |      |  |

## Waterford Biology



12. Prepare a presentation for your instructor. To do so, prepare a presentation. This should involve a handout, a slide presentation (such as PowerPoint or Google Slides), or some other kind of visual. In your presentation, address each of the following:

#### a. Introduction:

- i. Our research subject (the thing we are studying) is \_\_\_\_\_\_.
- ii. We are interested in this specific aspect of this subject: \_\_\_\_\_\_.
- iii. We are interested in this because \_\_\_\_\_
- iv. The following details and facts from <u>credible sources</u> are important to understand in order to fully grasp what we are proposing to do in our work: \_\_\_\_\_\_.
  - 1. Cite all your sources using parenthetical citations (Author Last Name, Year)
  - 2. All these sources should also be cited in your Works Cited section.

#### b. Overview Statement:

- i. Our broad overall goal is to \_\_\_\_\_\_.
- ii. Our specific objective is to \_\_\_\_\_\_.
- iii. Our hypothesis is \_\_\_\_\_
- iv. We developed this hypothesis in response to \_\_\_\_\_\_.
- v. The rationale for this is hypothesis is \_\_\_\_\_
- vi. This work could improve our understanding of \_\_\_\_\_\_ because

vii. This work is significant because \_\_\_\_\_

viii. We believe this work is both feasible and worth funding because \_\_\_\_\_\_.

#### c. Needed Materials & Summary of Methods

d. Expected Findings (with specific reasons for why you expect to obtain these particular findings)

#### e. Conclusion & Summary of Key Points

#### f. Works Cited

- i. Include all references that are parenthetically cited in this presentation.
- ii. Use APA Citation: Last Name, First Initial. (Year). Title of document. *Publication*. For example:

Kohn, C. (2018). The development of a bioenergy-based green chemistry curriculum for high schools. *Physical Sciences Reviews*, *4*(1), 80.





Your presentation will be assessed using the following criteria:

| Item                 | Plus (100%)                                                                                                                                        | Check (70-90%)                                                                                                                                                         | Redo (0%)                                                                                                     |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Accuracy             | No errors were detected in this presentation                                                                                                       | This presentation contained<br>a few errors, but overall<br>was very accurate.                                                                                         | This presentation contained considerable errors.                                                              |
| Thoroughness         | No important information was omitted.                                                                                                              | A few more details would have enhanced this work.                                                                                                                      | Major topics were omitted<br>that should have been<br>included.                                               |
| Professionalism      | This presentation could be effectively delivered to a group outside of the school.                                                                 | This is acceptable work for<br>high school students but it<br>could potentially be better.                                                                             | The professionalism of this group needs improvement.                                                          |
| Group<br>Involvement | Every member was involved<br>with the development of<br>the presentation as well as<br>its delivery.                                               | At least one more group<br>member could have been<br>more involved.                                                                                                    | Multiple group members<br>could have been more<br>involved.                                                   |
| Effort               | Effort exceeds what would<br>be expected of a high<br>school student.                                                                              | Effort is acceptable for a<br>high school student but it<br>could potentially be better.                                                                               | Level of effort could have<br>been much greater than<br>what was presented.                                   |
| Feasibility          | This proposal is completely<br>feasible for the constraints<br>in time, funding, resources<br>etc. within this classroom.                          | This proposal creates some<br>challenges but could be<br>conducted with some<br>additional effort.                                                                     | This proposal is not feasible<br>for the constraints in time,<br>funding, and resources of<br>this classroom. |
| Quality of Inquiry   | This proposal addresses a<br>completely novel question.<br>This work would improve<br>our understanding of a<br>specific phenomenon or<br>subject. | While this proposal<br>addresses a question that is<br>largely understood, it would<br>expand our understanding<br>for a specific context and is<br>worth considering. | This proposal presents<br>something that already well<br>understood and its<br>outcome is predictable.        |