WUHS Biology: Traits \& Genes Unit

Week 1 - How are traits determined?

Traits \& Genes Unit - W1 Driving Question

- Driving Question: What determines the traits of an organism?
- How are the traits of an organism affected by DNA and proteins?
- How do processes at the cellular level determine the observable traits at the organismal level?
- How are the instructions for an organism's traits passed on as cells divide?
- How can one cell become trillions of cells in an organism?

Traits are determined by proteins.

- All living organisms have physical traits, or observable characteristics.
- Examples of traits in your own body include eye color, hair color, height, and all other observable characteristics.
- An organism's traits are determined by the kinds of proteins assembled in its cells.
- Proteins are macromolecules (or polymers) comprised of long chains of amino acids.
- Proteins are what perform most cell activities.
- The order in which amino acids are assembled determines the type of protein.

Functions of Proteins

- Different kinds of proteins perform different functions within a cell. Examples include:

Transport proteins in cell membranes move substances into or out of the cell. or assemble or disassemble polymers.

- Transporters move atoms or small molecules throughout the cell or the body.

Structural proteins like keratin provide physical support to organisms' bodies.

- Structural Proteins provide physical support and rigidity to shape and hold up an organism's body.
- Contractile Proteins can lengthen and shorten to allow an organism to move.
- Signaling Proteins such as hormones send coordinate activities within \& among cells.

Contractile proteins like actin \& myosin enable muscles to contract \& relax.

Insulin is a hormone that regulates levels of glucose in the blood.

- Antibodies attach to viruses \& bacteria to protect cells within the body and aid in their identification.

Enzymes such as amylase assemble, disassemble, or rearrange molecules.

- Enzymes rearrange atoms to form new molecules,

Antibodies attach to bacteria and viruses in order to protect the body and its cells.

Genes \& DNA

- The instructions for assembling a protein are contained within DNA.
- DNA is a macromolecule made of long twisting chains of molecules called nucleotides.
- DNA is stored in the nucleus of the cell.
- A gene is a section of DNA that contains the instructions for the assembly of a particular protein.
- Cells contains tens of thousands of different kinds of proteins.
- Each protein is associated with a specific gene.
- For an organism to have a trait, they need a protein and gene specific to that trait*.

Chromosomes

- DNA can be coiled into tight packages called chromosomes.
- In most cases, a human cell has 23 pairs of chromosomes (or 46 chromosomes altogether) \rightarrow
- Animal offspring will inherit one copy of each chromosome from each biological parent.
- Most of the time, DNA is not found in chromosomes.
- DNA is only packed into chromosomes prior to cell division to ensure that it is divided evenly between each cell.
- Prior to packing DNA into chromosomes, animal cells will duplicate its DNA.
- This means a cell will temporarily have four copies of each chromosome before dividing in half \rightarrow

Mitosis

- For an organism to grow, it must acquire atoms from food, assemble new molecules (through biosynthesis), and enlarge its cells.
- Eventually cells can grow large enough to split into two separate cells.
- The process of creating new cells through cell division is called mitosis.
- Mitosis is necessary for an organism to grow larger, to replace dying cells, and to repair wounds and damaged tissue.
- Replication of DNA is an important to mitosis.
- Without DNA, a cell would be unable to assemble the proteins that it needs to function.
- Packing DNA into chromosomes ensures that genes are split evenly between the two cells.

Stages of Mitosis

- Prior to cell division, a cell must duplicate all its DNA (a).
- It must also increase in size and duplicate its organelles.
- The cell will also assemble specialized structural proteins (called spindles) to organize and evenly divide the DNA.
- The cell then uses proteins called histones to pack the loose DNA into tight packages called chromosomes (b).
- Chromosomes then line up on the protein spindles (c).
- Each chromosome then moves away from its copy (d).
- Once separated, the chromosomes unravel from the histone proteins back into loose DNA; the spindle

. proteins are then disassembled.
- The large cell then separates into two smaller cells, each with their own copy of DNA (e).

Closer Look at a Histones \& Chromosomes

Regulation of Mitosis

- An organism must carefully control how rapidly its cells divide.
- If cell division is too slow, an organism will struggle to recover from injury and will have a slow rate of growth.
- If cell division is too rapid, it can disruption bodily function. An extreme form of uncontrolled cell growth and division is cancer.
- Mitosis and cell division are regulated by specialized proteins such as cyclin (which stimulates spindle formation) and growth factors.
- These proteins limit when and how often a cell can divide.
- Cell growth is also regulated by programmed cell death (or apoptosis).
- If a cell is damaged and should not divide, it will produce enzymes that stop cell division and break down the cell \rightarrow

Exponential Growth

- Every living organism begins with only one cell; however, most animals have trillions of cells.
- Exponential growth explains how trillions of cells can form from just one.
- Exponential growth refers to when an increase in the number of something occurs at a faster and faster rate over time.
- For example, when an organism's first cell, divides, it creates 2 cells.
- These 2 cells will divide into 4 cells.
- 4 cells can then create 8 cells, 8 cells can create 16 cells, and then 32 , then 64 , etc.
- Each time, the number of cells doubles.
- If each cell divided once a day, it would only take 40 days to reach 1 trillion cells.

Cell Differentiation

- Almost all cells in an organism share the same DNA; however, multi-celled organisms require different kinds of cells with different functions.
- For example, muscle cells have proteins that contract; nerve cells can send electrical signals; and bone cells can support a body's weight
- Cells must be able to control which genes are expressed to create different kinds of cells with different jobs and characteristics.
- This process is known as cellular differentiation.
- As cells divide, they receive signals to turn off some genes; within a few days of fertilization, a cell's function is already generally determined.

12
Image Source: Wikimedia

Revising Our Claims

- Revisit your ideas from Part 1. How could you improve your responses to our Driving Questions?
- What determines the traits of an organism?
- How do DNA and proteins affect the traits of an organism?
- How do processes at the cellular level determine the observable traits at the organismal level?

How are the instructions for an organism's traits passed on as a cell divides?

- How can one cell become trillions of cells in an organism?

Looking Ahead: Part 3 Investigation

- In Part 3 you will be conducting two investigations.
- In Part A, you will use your understanding of the steps of mitosis to determine the correct order of images of cells dividing.
- In Part B, you will observe different stages of mitosis in both plant and animal cells using a microscope.

Key Points

- An organism's traits are determined by the kinds of proteins assembled in its cells.
- Different kinds of proteins perform different functions within a cell. Types of proteins include enzymes, transporters, structural, contractile, signaling, and antibodies.
- The instructions for assembling a protein are contained within DNA, a long twisting macromolecule.
- A gene is a section of DNA that contains the instructions for the assembly of a particular protein. For an organism to have a trait, they need a protein and gene specific to that trait.
- DNA can be coiled into tight packages called chromosomes. DNA is packed into chromosomes prior to mitosis to ensure that it is divided evenly between each cell.

Key Points

- The process of creating new cells through cell division is called mitosis.
- Replication of DNA prior to mitosis is important to ensure each cell has the instructions needed to assemble the proteins that it needs to function.
- Duplicating DNA and packing it into chromosomes before mitosis ensures that genes are split evenly between the two cells.
- Mitosis consists of a few key steps, including... a) duplicating DNA and assembling spindle proteins; b) packing DNA into chromosomes using histones; c) lining duplicated chromosomes onto spindles; d) separating the chromosome copies; and e) dividing the cell in half.

Key Points

- Cell division must be carefully regulated. Slow cell division limits the rates of growth and healing. Overly-rapid cell division can result in cancer.
- Regulator proteins like cyclin (which stimulates spindle formation) and growth factors limit when and how often a cell can divide.
- Exponential growth explains how trillions of cells can form from just one. In only 40 cycles of doubling, one cell can become trillions.
- While cells in an organism share the same DNA, multi-celled organisms require different kinds of cells with different functions. Through cellular differentiation, cells receive signals to turn off some genes, which determines a cell's eventual function.

Key Vocab

- Physical traits: the observable characteristics of an organism.
- Proteins: a type of macromolecule (or polymer) comprised of long chains of amino acids that perform most cell activities.
- DNA: a macromolecule made of long twisting chains of molecules called nucleotides.
- Gene: a section of DNA that contains the instructions for the assembly of a particular protein.
- Chromosome: a tightly coiled package of DNA; chromosomes ensure DNA is divided evenly between each cell during mitosis.
- Mitosis: cell division with DNA replication.
- Spindles: specialized structural proteins that organize \& evenly divide DNA.
- Histones: proteins that coil the loose DNA into tight packages.
- Cancer: an extreme form of uncontrolled cell growth and division.
- Apoptosis: programmed cell death.
- Exponential growth: an increase in the number of something occurring at a faster rate over time.
- Cellular differentiation: changing which genes are expressed to create different kinds of cells with different jobs and characteristics.

